

aerospace climate control electromechanical filtration fluid & gas handling hydraulics pneumatics process control sealing & shielding

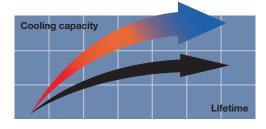
Oil Coolers For Temperature Optimization In Hydraulic Systems

Catalog HY10-1700/Americas

ENGINEERING YOUR SUCCESS.

Table of Contents

Oil Coolers
More Cooling Per \$6
ULAC With AC Motor
Cooling Performance10
Pressure Drop11
Dimensions12
Order Key and Technical Specifications14
ULOC Cooling System
Cooling Performance
Dimensions
Order Key and Technical Specifications
ULDC With DC Motor
Cooling Performance
Pressure Drop
Dimensions
Order Key and Technical Specifications
ULHC With Hydraulic Motor
Cooling Performance
Pressure Drop25
Dimensions
Order Key and Technical Specifications
OAW Cooling System
General
Cooling Performance, Pressure Drop, Dimensions
Installation
Accessories
Cooling Modules/Combination Cooler
Product Groups



Parker is a global player specializing in innovative, efficient system solutions for temperature optimization and energy storage. All over the world, our products are working in the most diverse environments and applications.

Oil Coolers

Choosing the right cooler requires precise system sizing. The most reliable way to size a cooler is with the aid of our calculation program. This program, together with precise evaluations from our experienced, skilled engineers, gives you the opportunity for more cooling per \$ invested.

Overheating – an expensive problem

An underestimated cooling capacity produces a temperature that is too high. The consequences are poor lubricating properties, higher internal leakage, a higher risk of cavitation, damaged components, etc. Overheating leads to a significant drop in efficiency which can be detrimental to our environment.

Temperature optimization – a basic prerequisite for cost-efficient operation

Temperature balance in a hydraulic system occurs when the cooler can cool down the energy input that the system does not consume – the system's lost energy (Ploss = Pcool = Pin – Pused).

Temperature optimization occurs at the temperature at which the oil viscosity is maintained at recommended values. The correct working temperature produces a number of economic and environmental benefits:

- The hydraulic system's useful life is extended.
- The oil's useful life is extended.
- The hydraulic system's availability increases – more operating time and fewer shutdowns.
- Service and repair costs are reduced.
- High efficiency level maintained in continuous operation – the system's efficiency falls if the temperature exceeds the ideal working temperature.

Easy to maintain and easy to retrofit in many applications. Compact design and low weight. Quiet fan and pump. Cooler core with low pressure drop and high cooling capacity. ULDC with DC Motor For mobile use – maximum cooling capacity 40 HP **Optimized design** with the right choice of materials and components ensures reliable and long lasting cooling with low service and maintenance costs. Compact design results in a lighter weight unit with higher cooling capacity and lower pressure drop. Easy to maintain and easy to retrofit into many applications. DC motor 12V/24V Quiet fan and fan motor. ULHC with Hydraulic Motor For mobile and industrial use – maximum cooling capacity 215 HP **Optimized design** and the right choice of materials and components produce a long useful life, high availability and low service and maintenance costs. Compact design results in a lighter weight unit with higher cooling capacity and lower pressure drop. Easy to maintain and easy to retrofit into many applications.

Hydraulic motor with displacement from 8.4 cc/rev to 25.2 cc/rev.

Collar bearing for fan motor on larger models provides longer operating life.

Quiet fan design due to optimization of material and blade.

Cooler core with low pressure drop and high cooling capacity.

ULAC with AC Motor

pressure drop

and frequencies available.

For industrial use – maximum cooling capacity 400 HP*

and long lasting cooling with low service and maintenance costs.

Easy to maintain and easy to retrofit into many applications. Quiet fan design due to optimization of material and blade.

Cooler core with low pressure drop and high cooling capacity.

ULOC Cooling System For industrial use – maximum cooling capacity 60 HP

useful life, high availability and low service and maintenance costs.

Optimized design with the right choice of materials and components ensures reliable

Compact design results in a lighter weight unit with higher cooling capacity and lower

AC motor - NEMA three phase motors are standard. A wide range of operating voltages

Optimized design and the right choice of materials and components produce a long

Integrated circulation pump produces an even flow with low pressure pulsations.

OAW Cooling System For mobile and industrial use – maximum cooling capacity 274 HP

Optimized design and the right choice of materials and components ensures reliable and long lasting cooling with low service and maintenance costs.

Compact design for easy installation.

Turbulent water flow prevents clogging and reduces maintenance.

Low water consumption for economical operation.

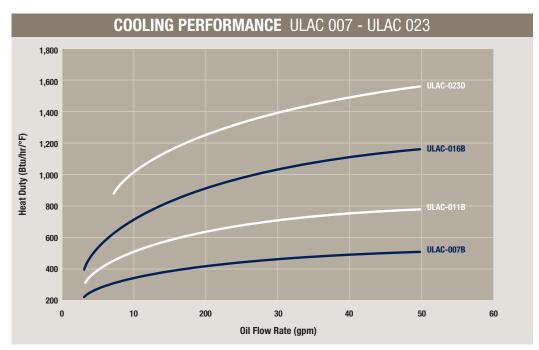
SAE O-ring connections for ease of assembly and leak-proof operation.

Maximum material efficiency with no "Dead Zone" outside gaskets.

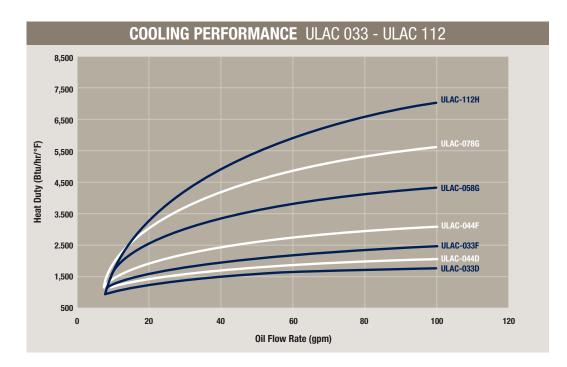
*At 250 gpm and 70 °F ITD

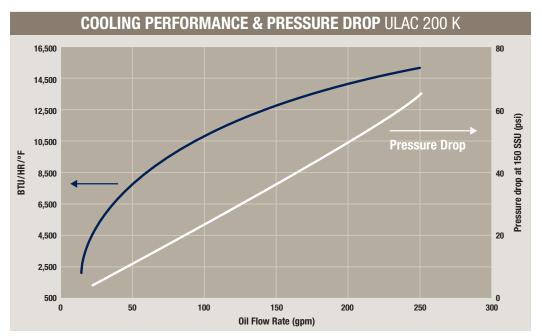
0AW

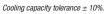
ULAC with AC Motor For industrial use – cooling capacity up to 400 HP

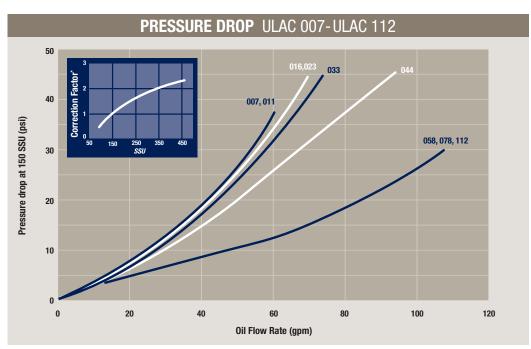

The ULAC oil cooler with AC motor is optimized for use in the industrial sector. Together with a wide range of accessories, the ULAC cooler is suitable for installation in most applications and environments.

- Optimized design with right choice of materials and components ensures a reliable and long lasting cooler with low service and maintenance costs.
- Compact design resulting in lighter weight unit yet with higher cooling capacity and lower pressure drop.

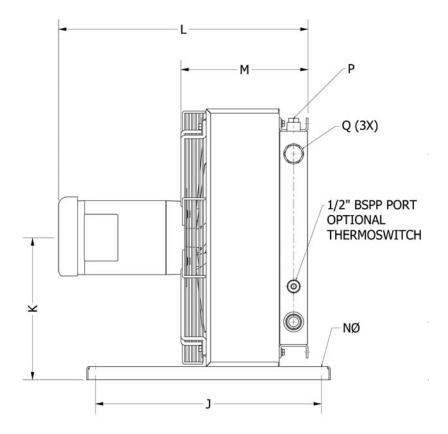

- Easy to maintain and easy to retrofit into many applications.
- Quiet fan design due to optimization of material and blade design.
- AC motor NEMA three phase motors are standard. Wide range of operating voltages and frequencies available.
- Cooler core with low pressure drop and high cooling capacity.

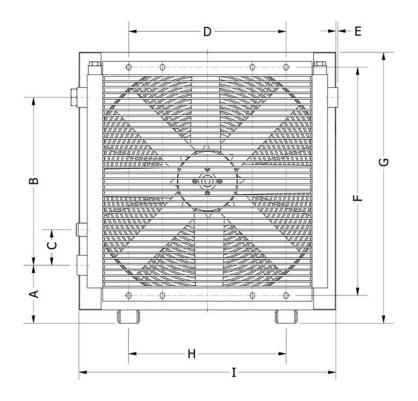

ULAC Cooling Performance


The cooling capacity curves are based on an ETD (Entering Temperature Difference) of 1 °F. For example, oil temperature of 140 °F and air temperature of 70 °F yields a temperature difference of 70 °F. Multiply the number from the cooling graphs corresponding to the specific flow rate by the ETD for the particular application to get the total heat duty.



Cooling capacity tolerance \pm 10%.





* Pressure Drop Correction Factor for other viscosities.

ТҮРЕ	Acoustic Pressure Level LpA dB(A) 3 Ft.*	No. Of Poles/ Capacity <i>HP</i>	Weight Lbs. (Approx.)	P SAE O-Ring	Q SAE O-Ring Boss
ULAC 007B	69	4/0.5	33	1⁄2" (#8)	1" (#16)
ULAC 011B	71	4/0.5	44	1⁄2" (#8)	1" (#16)
ULAC 016B	74	4/0.5	53	1⁄2" (#8)	1" (#16)
ULAC 023D	81	4/1	79	1⁄2" (#8)	1" (#16)
ULAC 033D	82	4/1	115	1⁄2" (#8)	1¼" (#20)
ULAC 033F	86	4/3	170	1⁄2" (#8)	1¼" (#20)
ULAC 044D	83	4/1	143	1⁄2" (#8)	1¼" (#20)
ULAC 044F	87	4/3	197	1⁄2" (#8)	1¼" (#20)
ULAC 058G	90	4/5	264	3⁄4" (#12)	1½" (#24)
ULAC 078G	92	4/5	434	3⁄4" (#12)	1½" (#24)
ULAC 112H	96	4/7.5	542	3⁄4" (#12)	1½" (#24)
ULAC 200K	93	6/15	1,030	NA	CODE 61 SAE 2" FLANGE

*Noise level tolerance $\pm 3 \, dB(A)$.

ТҮРЕ	A	В	C	D	E	F	G	н	I	J	К	L	М	Nø
ULAC 007B	5.2	6.3	3.2	8.0	0.24	11.7	15.6	8.0	14.4	20.1	8.4	19.8	8.8	0.35
ULAC 011B	5.4	9.0	3.2	8.0	0.12	14.3	18.5	8.0	17.3	20.1	9.8	20.8	9.8	0.35
ULAC 016B	5.2	11.7	3.2	8.0	0.28	17.0	20.7	8.0	19.5	20.1	10.9	21.6	10.7	0.35
ULAC 023D	5.2	14.9	3.2	14.0	0.20	20.2	24.0	14.0	22.8	20.1	12.6	22.2	11.3	0.35
ULAC 033D	5.2	19.1	3.2	14.0	NA	24.5	28.4	14.0	27.2	20.1	14.8	23.1	12.5	0.35
ULAC 033F	5.2	19.1	3.2	14.0	NA	24.5	28.4	14.0	27.2	24.0	14.8	25.6	12.5	0.55
ULAC 044D	4.6	26.1	3.2	14.0	NA	31.5	34.1	14.0	27.2	20.1	17.6	24.1	13.3	0.35
ULAC 044F	4.6	26.1	3.2	14.0	NA	31.5	34.1	14.0	27.2	24.0	18.3	26.6	13.5	0.55
ULAC 058G	5.2	26.1	3.2	20.0	NA	31.5	35.4	20.0	34.2	24.0	18.3	29.9	15.2	0.55
ULAC 078G	5.2	32.3	3.9	26.8	NA	38.9	41.4	20.4	40.2	35.4	21.1	30.9	16.2	0.55
ULAC 112H	5.1	38.8	3.9	31.1	0.14	45.4	47.8	23.6	46.7	35.4	24.4	31.9	17.2	0.55
ULAC 200K	7.2	50.9	5.0	49.6	1.2	61.0	64.2	55.9	59.4	35.4	32.7	41.5	18.7	0.71

All dimensions listed above are in inches.

Order Key for ULAC Oil Coolers All positions must be filled in when ordering.

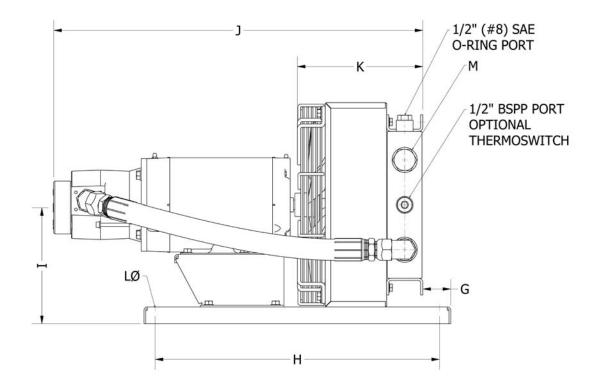
EXAMPLE:												
ULAC -	007B	- M	- 100	- SA								
Series	Model	Motor Type										
1	2	3	4	5								
1. OIL COOL	ER SERIES V	ИТН АС МОТОР	R; ULAC									
2. COOLER S			0445 0440									
	007B, 011B, 016B, 023D, 033F, 033D, 044F, 044D, 058G, 078G, 112H and 200K.											
0300, 0700, 1120 dilu 2008.												
3. MOTOR T	VPF											
No motor				= W								
	se 190/380\	/ 50 Hz, 208-23	0/460V 60 Hz	= M [*]								
	ise 208-230/		0,1001 00112	= N								
	se 230/460V			= P								
	ise 575V 60 l			= Q								
	ase 115/230			= R								
• •	ase 230 V 60			= S								
0 1		n 1, Class 1 Gro	D. au	-								
	oup F & G, T3	,		= X								
	1 /	imulator and Co	oler Division	= Z								
,			and lower. The peri	formance at								
50 HZ will be i	reduced by app	proximately 10%										
4. THERMOS	WITCH											
A. THERMOS				= 000								
100 °F	5001011			= 100								
120 °F				= 100								
140 °F				= 140								
160 °F				= 160								
175 °F				= 175								
195 °F				= 195								
Not listed,	consult Accu	umulator and Co	oler Division	= ZZZ								
)												
5. CORE BYF	PASS*											
No Bypass	3			= SW								
20 psi Ext	ernal Hose B	ypass <i>(standard</i>	option)	= SA								
65 psi Ext	ernal Hose B	ypass <i>(standard</i>	option)	= SB								
30 psi Ext	ernal Tube By	/pass		= SG								
75 psi Ext	ernal Tube By	/pass		= SH								
120 psi Ex	ternal Tube E	Bypass		= SJ								
120 °F Ex	120 °F External Thermo-Bypass = SM											
140 °F Ex	ternal Therm	o-Bypass		= SN								
	ternal Therm			= SP								
195 °F Ex	195 °F External Thermo-Bypass = SQ											
Full Flow I	External Bypa	ISS		= SF								
			cores and other opt ulator and Cooler Di									

Technical Specifications

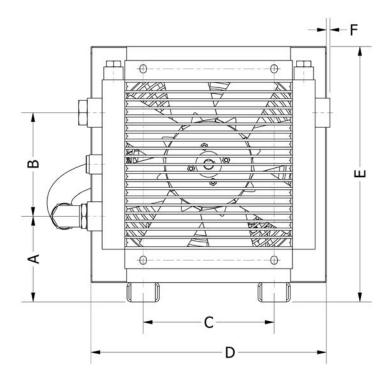
FLUID COMBINATIONS	
Mineral oil	
Oil/water emulsion	
Water glycol	
Phosphate ester	
MATERIAL	
Cooler core	Aluminum
Fan blades/hub	Glass fiber reinforced polypropylene/ Aluminum
Fan housing	Steel
Fan guard	Steel
Other parts	Steel
Surface treatment	Electrostatically powder-coated
COOLER CORE	
Maximum static working pres	sure 300 psi
Dynamic working pressure	200 psi*
Heat transfer tolerance	±6%
Maximum oil inlet temperatur	re 250 °F
*Tested in accordance with ISO/DIS 1	0771-1
COOLING CAPACITY CURVES	
Cooling capacity curves are	based on testing in accordance with
EN1048 with ISO VG 46.	
CONTACT PARKER FOR ADVICE	ON
Oil temperatures > 250 °F	
Oil viscosity > 100 cSt / 500	SSU
Aggressive environments	
Environments with heavy airb	orne particulates
High-altitude locations	
and a set of	
ULAC 🔪	

The information in this brochure is subject to change without prior notice.

ULOC Cooling System


For industrial use - cooling capacity up to 60 HP

The ULOC cooling system with three-phase AC motor is optimized for use in the industrial sector. The system is supplied ready for installation. An integrated circulation pump makes it possible to cool and treat the oil in a separate circuit – offline cooling. Together with a wide range of accessories, the ULOC cooling system is suitable for installation in most applications and environments.


• Optimized design with right choice of materials and components ensures a reliable and long lasting cooler with low service and maintenance costs.

- Integrated circulation pump produces an even flow with low pressure pulsations.
- Easy to maintain and easy to retrofit in many applications.
- Compact design and low weight.
- Quiet fan and fan motor.
- Cooler core with low pressure drop and high cooling capacity.

ТҮРЕ	Nom. Oil Flow Rate (gpm)	Cooling Capacity at 50 °F ETD (Btu/hr)	Cooling Capacity Btu/hr/°F	Acoustic Pressure Level LpA dB(A) 3 Ft.*	Motor Capacity / No. Of Poles HP	Motor
ULOC 007D - A	6.3	15,500	310	71	1/4	1-4-143TC
ULOC 007D - B	12.7	19,000	380	71	1/4	1-4-143TC
ULOC 007E - C	19.0	21,000	420	72	2/4	2-4-145TC
ULOC 007E - D	25.4	22,500	450	72	2/4	2-4-145TC
ULOC 011D - A	6.3	24,000	480	74	1/4	1-4-143TC
ULOC 011D - B	12.7	28,500	570	74	1/4	1-4-143TC
ULOC 011E - C	19.0	32,000	640	74	2/4	2-4-145TC
ULOC 011E - D	25.4	34,500	690	74	2/4	2-4-145TC
ULOC 016E - A	6.3	33,500	670	78	2/4	2-4-145TC
ULOC 016E - B	12.7	41,000	820	78	2/4	2-4-145TC
ULOC 016E - C	19.0	47,000	940	78	2/4	2-4-145TC
ULOC 016E - D	25.4	50,000	1,000	78	2/4	2-4-145TC
ULOC 023F - B	12.7	60,000	1,200	82	3/4	3-4-182TC
ULOC 023F - C	19.0	65,000	1,300	82	3/4	3-4-182TC
ULOC 023F - D	25.4	70,000	1,400	82	3/4	3-4-182TC
ULOC 033G - C	19.0	80,000	1,600	87	5/4	5-4-182TC
ULOC 033G - D	25.4	90,000	1,800	87	5/4	5-4-184TC
ULOC 044G - C	19.0	95,000	1,900	88	5/4	5-4-182TC
ULOC 044G - D	25.4	105,000	2,100	88	5/4	5-4-182TC

Electric motors specified are calculated for max. Working pressure 90 psi at 125 cSt and 50 Hz, 60 psi at 125 cSt and 60 Hz. If you require higher pressure, please contact us for a choice of motors with a higher output. * Noise level tolerance ± 3 dB(A).

ТҮРЕ	A	В	C	D	E	F	G	н	Т	J	К	Lø	M SAE O-Ring Boss*
ULOC 007D - A	5.2	6.3	8.0	14.4	15.6	0.2	2.0	20.1	8.5	26.1	8.9	0.35	1" (#16)
ULOC 007D - B	5.2	6.3	8.0	14.4	15.6	0.2	2.0	20.1	8.5	26.6	8.9	0.35	1" (#16)
ULOC 007E - C	5.2	6.3	8.0	14.4	15.6	0.2	2.0	20.1	8.5	27.1	8.9	0.35	1" (#16)
ULOC 007E - D	5.2	6.3	8.0	14.4	15.6	0.2	2.0	20.1	8.5	27.6	8.9	0.35	1" (#16)
ULOC 011D - A	5.3	9.0	8.0	17.3	18.5	0.1	2.0	20.1	9.9	27.0	9.9	0.35	1" (#16)
ULOC 011D - B	5.3	9.0	8.0	17.3	18.5	0.1	2.0	20.1	9.6	27.4	9.8	0.35	1" (#16)
ULOC 011E - C	5.4	9.0	8.0	17.3	18.5	0.1	2.0	20.1	9.9	28.0	9.8	0.35	1" (#16)
ULOC 011E - D	5.4	9.0	8.0	17.3	18.5	0.1	2.0	20.1	9.6	28.5	9.8	0.35	1" (#16)
ULOC 016E - A	5.1	11.7	8.0	19.5	20.7	0.3	2.0	20.1	11.0	27.7	10.7	0.35	1" (#16)
ULOC 016E - B	5.1	11.7	8.0	19.5	20.7	0.3	2.0	20.1	11.0	28.2	10.7	0.35	1" (#16)
ULOC 016E - C	5.1	11.7	8.0	19.5	20.7	0.3	2.0	20.1	11.0	28.8	10.7	0.35	1" (#16)
ULOC 016E - D	5.1	11.7	8.0	19.5	20.7	0.3	2.0	20.1	10.7	29.3	10.7	0.35	1" (#16)
ULOC 023F - B	5.2	14.9	14.0	22.8	24.0	0.2	2.0	24.0	12.4	30.7	11.3	0.55	1" (#16)
ULOC 023F - C	5.1	14.9	14.0	22.8	24.0	0.2	2.0	24.0	12.4	31.2	11.3	0.55	1" (#16)
ULOC 023F - D	5.1	14.9	14.0	22.8	24.0	0.2	2.0	24.0	12.4	31.7	11.3	0.55	1" (#16)
ULOC 033G - C	5.2	19.1	14.0	27.2	28.4	-	2.4	24.0	14.6	32.7	12.5	0.55	1¼" (#20)
ULOC 033G - D	5.2	19.1	14.0	27.2	28.4	-	2.4	24.0	14.9	33.2	12.5	0.55	1¼" (#20)
ULOC 044G - C	4.5	26.1	14.0	27.2	34.1	-	2.0	24.0	17.4	33.6	13.5	0.55	1¼" (#20)
ULOC 044G - D	4.5	26.1	14.0	27.2	34.1	-	2.0	24.0	17.4	33.9	13.5	0.55	1¼" (#20)

* Port on the inlet side of the pump is 1½" (#24) SAE 0-ring Boss for all models. All dimensions listed above are in inches.

Order Key for ULOC Cooling Systems All positions must be filled in when ordering.

EXAMPLE: ULOC -	007D Model	- M	- A Pump Flow Rate	- SA						
1	2	57	rump riow nate	5						
1	2	3	4	5						
1. OIL COOL	er series (FFLINE, WITH	PUMP; ULOC							
2. COOLER SIZE/MODEL										
007D, 007	7E, 011D, 01	1E, 016E, 023F,	033G, 044G							
3. MOTOR T	YPE									
No motor				= W						
Three pha	ase, 190/380	/ 50 Hz, 208-23	30/460V 60Hz	= M						
Three pha	ase, 575V 60H	lz		= Q						
Not listed	, consult Acci	umulator and Co	oler Division	= Z						
Performance a	nt 50 Hz will be	reduced by appro	oximately 10%							
4. PUMP FL	OW RATE (GI	PM)								
6				= A						
12				= B						
19				= C						
25				= D						
5. CORE BY	PASS*									
No Bypas	S			= SW						
20 psi Ext	ternal Hose B	ypass <i>(standard</i>	d option)	= SA						
65 psi Ext	ternal Hose B	ypass <i>(standard</i>	d option)	= SB						
30 psi Ext	ternal Tube B	/pass		= SG						
75 psi Ext	ternal Tube B	/pass		= SH						
120 psi E	xternal Tube I	Bypass		= SJ						
120 °F E	xternal Thern	no-Bypass		= SM						
140 °F E	xternal Thern	no-Bypass		= SN						
160 °F E	xternal Thern	no-Bypass		= SP						
195 °F E	xternal Thern	10-Bypass		= SQ						
			cores and other opti ulator and Cooler Div							

Technical Specifications

COOLER CORE								
Maximum static working pres	sure	300 psi						
Dynamic working pressure		200 psi*						
Heat transfer tolerance		±6%						
Maximum oil inlet temperatur	e	250 °F						
* Tested in accordance with ISO/DIS	10771-1							
 ULOC is designed primarily oils and mineral oil type HI DIN 51524. Maximum oil type 	L/HLP in accordance with							
 Maximum negative pressure in the inlet line is 6 psi with an oil-filled pump. Maximum pressure on the pump's suction side is 8 psi. 								
Maximum working pressur	re for the pump is 150 psi.							
Heat transfer tolerance		±6%						
MATERIAL								
Cooler core	ŀ	Aluminum						
Fan blades/hub	Glass fiber reinforced polyp	ropylene/ Aluminum						
Fan housing		Steel						
Fan guard		Steel						
Pump housing	ł	Aluminum						
Other parts		Steel						
Surface treatment	Electrostatically powd	er-coated						
CONTACT PARKER FOR ADVICE	ON							
0il temperatures > 250 °F								
Oil viscosity > 100 cSt / 500 SSU	J							
Aggressive environments								
Environments with heavy airborn	e particulates							
High-altitude locations								

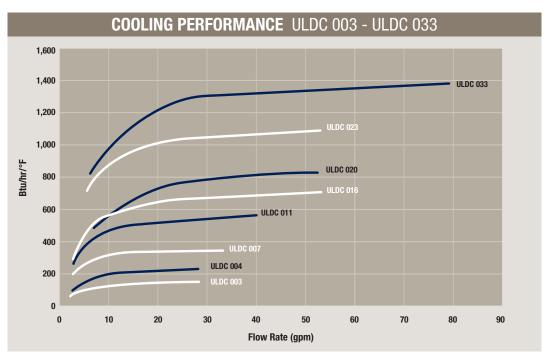
The information in this brochure is subject to change without prior notice.

Bypass Valve

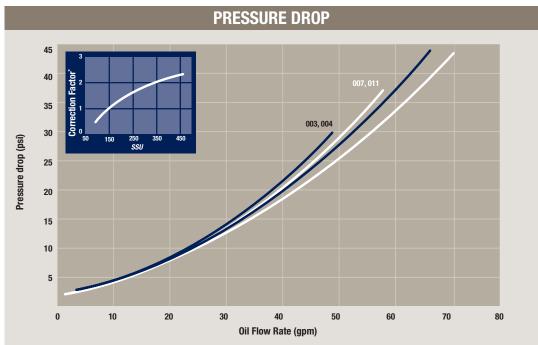
Stone Guard

ULDC With DC Motor

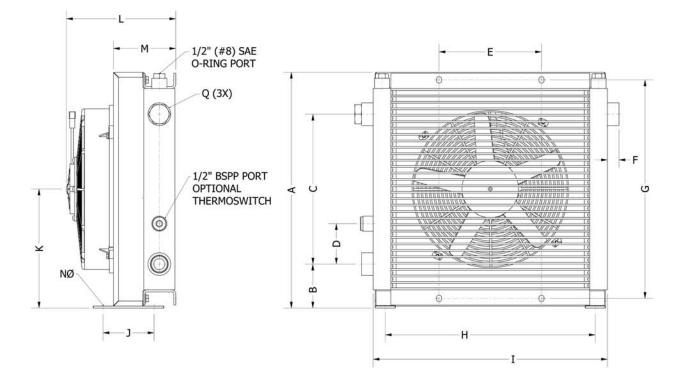
For mobile use - cooling capacity up to 40 HP



The ULDC oil cooler with 12 or 24V DC motor is optimized for use in the mobile industry. Together with a wide range of accessories, the ULDC cooler is suitable for installation in most applications and environments.


- Optimized design with right choice of materials and components ensures a reliable and long lasting cooler with low service and maintenance costs.
- Compact design resulting in lighter weight unit yet with higher cooling capacity and lower pressure drop.
- Easy to maintain and easy to retrofit into many applications.
- DC motor 12V/24V.
- Quiet fan and fan motor.

ULDC Cooling Performance


The cooling capacity curves are based on an ETD (Entering Temperature Difference) of 1 °F. For example, oil temperature of 140 °F and air temperature of 70 °F yields a temperature difference of 70 °F. Multiply the number from the cooling graphs corresponding to the specific flow rate by the ETD for the particular application to get the total heat duty.

Cooling capacity tolerance ± 10%

* Pressure Drop Correction Factor for other viscosities.

ТҮРЕ	Weight Ibs (Approx.)	Acoustic Pressure LpA dB(A) 3 Ft.*	Max. Curren 12 Volts	i t (Amps.) ** 24 Volts	Q SAE O-Ring Boss
ULDC 003	11	68	9	3	1" (#16)
ULDC 004	13	63	7	4	1" (#16)
ULDC 007	20	71	13	6	1" (#16)
ULDC 011	26	75	20	12	1" (#16)
ULDC 016	33	75	20	12	1" (#16)
ULDC 020	40	82	20	10	1" (#16)
ULDC 023	55	75	20	12	1" (#16)
ULDC 033	66	75	20	12	1¼" (#20)

* Noise level tolerance ± 3 dB(A).
** ULDC-023 & ULDC-033 Cooler assemblies come with two fans each. The indicated max. current is for one fan only.

ТҮРЕ	A	В	C	D	E	F	G	H	I	J	K	L	М	Nø dia./oblong
ULDC 003	8.9	2.5	3.5	-	5.2	0.9	7.8	5.3	9.6	5.8	4.6	5.9	4.1	0.35 x 0.55
ULDC 004	10.0	3.5	3.5	-	6.0	0.9	9.0	5.3	10.5	5.8	5.2	6.0	4.3	0.35 x 0.55
ULDC 007	13.3	3.7	6.3	3.2	8.0	0.9	11.7	8.0	13.0	10.5	6.8	6.8	4.3	0.35
ULDC 011	15.6	3.4	9.0	3.2	8.0	0.9	14.3	14.2	15.7	4.0	7.9	8.5	4.9	0.35 x 1.1
ULDC 016	18.3	3.4	11.7	3.2	8.0	0.9	17.0	16.4	18.3	4.0	9.3	8.3	4.8	0.35 x 1.1
ULDC 020	20.1	3.0	13.8	2.8	8.0	0.9	18.7	18.5	20.1	4.0	10.1	8.3	4.9	0.35 x 0.55
ULDC 023	25.0	5.4	14.9	3.2	14.0	-	20.2	-	24.2	11.4	7.9/18.0	8.6	4.9	0.51
ULDC 033	26.7	3.4	19.1	3.2	14.0	1.0	24.5	-	25.0	11.4	7.9/18.0	10.1	6.5	0.51

All dimensions listed above are in inches.

Order Key for ULDC Oil Coolers

All positions must be filled in when ordering.

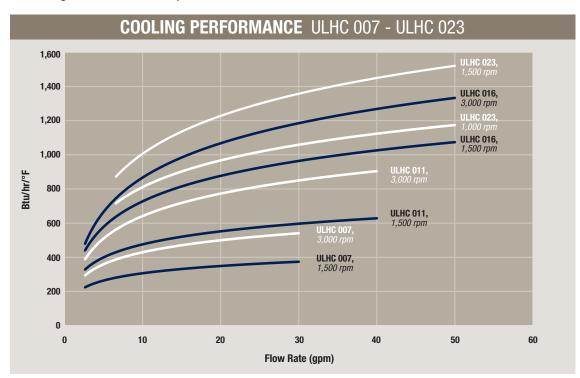
EXAMPLE:											
ULDC -	007	- A	- 000	- SA							
Series	Model	Motor Type	Thermoswitch	Core Bypass							
1	2	3	4	5							
1 011 0001											
1. OIL COOLER SERIES WITH DC MOTOR; ULDC											
2. COOLER SIZE/MODEL											
003, 004,	007,011,0	16, 020, 023, 03	3								
,,	,- ,-	-,,,									
3. MOTOR V	OLTAGE										
12 V				= A							
24 V				= B							
4. THERMOS											
No thermo	oswitch			= 000							
100 °F				= 100							
120 °F				= 120							
140 °F				= 140							
160 °F				= 160							
175 °F				= 175							
195 °F				= 195							
Not listed	, consult Acc	umulator and Co	oler Division	= ZZZ							
5. CORE BY	*2204										
No Bypas				= SW							
21		Sypass <i>(standard</i>	ontion)	= SA							
		Bypass <i>(standard</i>	1 /	= SB							
	ernal Tube E			= SG							
•	ernal Tube E			= SH							
•	xternal Tube			= SJ							
120 °F E	xternal Theri	no-Bypass		= SM							
140 °F E	xternal Theri	no-Bypass		= SN							
160 °F E	xternal Therr	no-Bypass		= SP							
195 °F E	xternal Theri	no-Bypass		= SQ							
Full Flow	External Byp	ass		= SF							
		ingle pass. Two pas lease consult Accui									

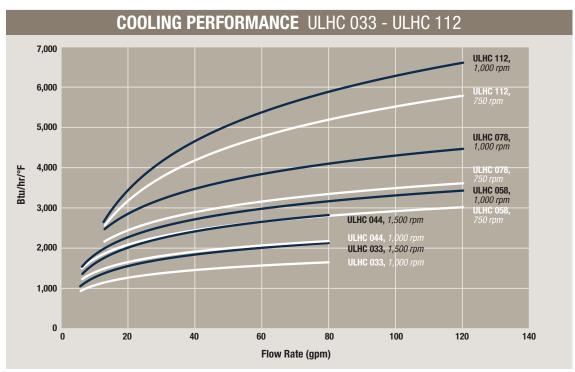
Technical Specifications

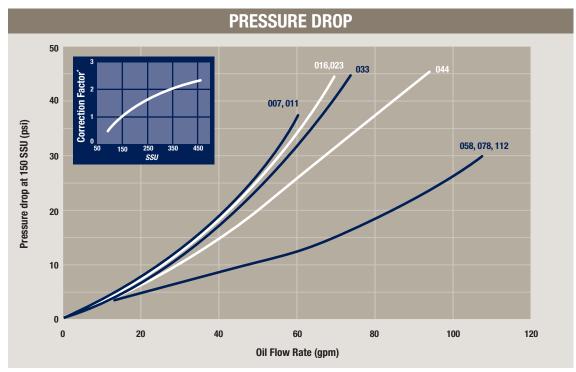
FLUID COMBINATIONS Mineral oil Oil/water emulsion Water glycol	
Oil/water emulsion Water glycol	
Water glycol	
Phosphate ester	
MATERIAL	
Cooler core Aluminu	m
Fan blades/guard Glass fiber reinforced polypropyle	ne
Fan housing Ste	el
Other parts Ste	el
Surface treatment Electrostatically powder-coat	ed
COOLER CORE	
Maximum static working pressure 300 p	osi
Dynamic working pressure 200 p	si*
Heat transfer tolerance ± 6	%
Maximum oil inlet temperature 250	°F
* Tested in accordance with ISO/DIS 10771-1	
COOLING CAPACITY CURVES	
The cooling capacity curves in this catalogue are created using	
oil type ISO VG 46 at 250 °F.	
CONTACT PARKER FOR ADVICE ON	
Oil temperatures > 250 °F	
Oil viscosity > 100 cSt / 500 SSU	
Aggressive environments	
Environments with heavy airborne particulates	
High-altitude locations	

ULHC With Hydraulic Motor

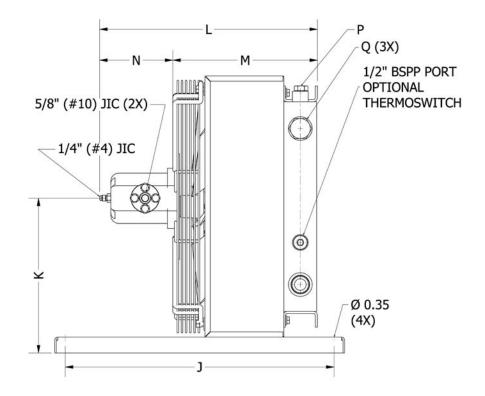
For mobile and industrial use - maximum cooling capacity 215 HP

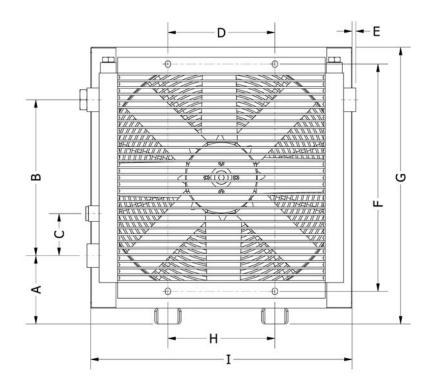

The ULHC oil cooler with hydraulic motor is optimized for use in the mobile and industrial sector. Together with a wide range of accessories, the ULHC cooler is suitable for installation in most applications and environments.


- Optimized design with right choice of materials and components ensures a reliable and long lasting cooler with low service and maintenance costs.
- Compact design resulting in lighter weight unit yet with higher cooling capacity and lower pressure drop.


- Easy to maintain and easy to retrofit into many applications.
- Hydraulic motor with displacement from 8.4 cc/rev to 25.2 cc/rev.
- Collar bearing for fan motor on larger models provides longer operating life.
- Quiet fan design due to optimization of material and blade design.
- Cooler core with low pressure drop and high cooling capacity.

ULHC Cooling Performance


The cooling capacity curves are based on an ETD (Entering Temperature Difference) of 1 °F. For example, oil temperature of 140 °F and air temperature of 70 °F yields a temperature difference of 70 °F. Multiply the number from the cooling graphs corresponding to the specific flow rate by the ETD for the particular application to get the total heat duty.


^{*} Pressure Drop Correction Factor for other viscosities.

ТҮРЕ	Fan Speed rpm	Fan Power HP	Weight Ibs. (Approx.)	Max Speed rpm	Acoustic Pressure Level LpA dB(A) 3 Ft*
ULHC 007	1,500	0.13	22	3,500	62
	3,000	0.87	22	3,500	79
ULHC 011	1,500	0.27	33	3,500	67
	3,000	2.01	33	3,500	82
ULHC 016	1,500	0.13	40	3,500	60
	3,000	0.47	40	3,500	70
ULHC 023	1,000	0.20	66	2,840	64
	1,500	0.67	66	2,840	76
ULHC 033	1,000	0.87	88	2,350	75
	1,500	2.68	88	2,350	85
ULHC 044	1,000	0.94	123	2,350	77
	1,500	2.68	123	2,350	86
ULHC 058	750	1.01	170	1,850	75
	1,000	2.41	170	1,850	83
ULHC 078	750	0.94	245	1,690	81
	1,000	2.15	245	1,690	88
ULHC 112	750	2.28	276	1,440	86
	1,000	5.36	276	1,440	92

* Noise level tolerance ± 3 dB(A).

MOTOR	Displacement cm ³ /r	N ULHC 007 - ULHC 023	N ULHC 033 - ULHC 112	Max. Working Pressure psi
А	8.4	4.5	6.1	3,000
В	10.8	4.8	6.3	3,000
С	14.4	4.9	6.6	3,000
D	16.8	5.0	6.7	3,000
E	19.2	5.2	6.9	3,000
F	25.2	5.6	7.4	2,330

ТҮРЕ	А	В	C	D	E	F	G	Н	I	J	K
ULHC 007	5.2	6.3	3.2	8.0	0.2	11.7	15.6	8.0	14.4	20.1	7.8
ULHC 011	5.4	9.0	3.2	8.0	0.1	14.3	18.5	8.0	17.3	20.1	9.2
ULHC 016	5.1	11.7	3.2	8.0	0.3	17.0	20.7	8.0	19.5	20.1	11.6
ULHC 023	5.2	14.9	3.2	14.0	0.2	20.2	24.0	14.0	22.8	20.1	12.0
ULHC 033	5.2	19.1	3.2	14.0	-	24.5	28.4	14.0	27.2	20.1	14.2
ULHC 044	4.6	26.1	3.2	14.0	-	31.5	34.1	14.0	27.2	20.1	17.0
ULHC 058	5.2	26.1	3.2	20.0	-	31.5	35.4	20.0	34.2	20.1	17.6
ULHC 078	5.2	32.3	3.9	26.8	-	38.9	41.4	20.4	40.2	24.0	20.7
ULHC 112	5.1	38.8	3.9	31.1	0.2	45.4	47.8	23.6	46.7	24.0	23.9

All dimensions listed above are in inches.

ТҮРЕ	L (Max)	м	P SAE O-ring	Q SAE O-ring Boss	Motor Selection
ULHC 007	14.4	8.9	1⁄2" (#8)	1" (#16)	A - F
ULHC 011	15.3	9.8	1⁄2" (#8)	1" (#16)	A - F
ULHC 016	16.3	10.8	1⁄2" (#8)	1" (#16)	A - F
ULHC 023	16.6	11.1	1⁄2" (#8)	1" (#16)	A - F
ULHC 033	19.7	12.5	1⁄2" (#8)	1¼" (#20)	A - F
ULHC 044	20.7	13.5	1⁄2" (#8)	1¼" (#20)	A - F
ULHC 058	22.4	15.3	³ ⁄4" (#12)	11⁄2" (#24)	A - F
ULHC 078	21.4	16.3	³ ⁄4" (#12)	11⁄2" (#24)	B - F
ULHC 112	24.4	17.2	³ ⁄4" (#12)	11⁄2" (#24)	D - F

Order Key for ULHC Oil Coolers

Δ	- 120	- SA
n ic motor	- 120 Thermoswitch	••••
cement	mormoormon	ooro Dypuo
3	4	5
DRAULIC	MOTOR; ULHC	
058, 078	and 112.	
EMENT		
		=W
		= A
		= E
		= 0
		= D
		= E
	D	= F
and Cool	er Division	= 2
		= 000
		= 100
		= 120
		= 140
		= 160
		= 175
		= 195
and Cool	er Division	= ZZZ
		= SN
tandard o	. ,	= SA
tandard o	option)	= SE
		= S6
		= SH
		= S.
SS		= SN
SS		= SN
SS		= SF
SS		= S0
		= SF
Й	vo pass co	vo pass cores and other opti Accumulator and Cooler Div

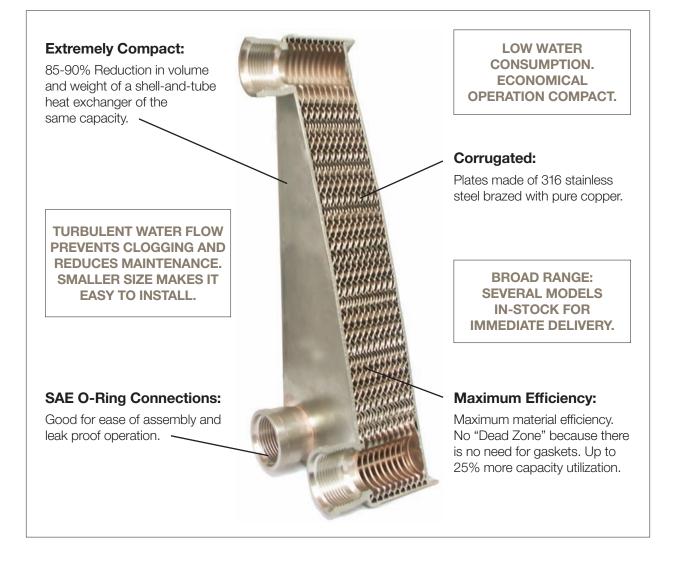
Technical Specifications

FLUID COMBINATIONS	
Mineral oil	
Oil/water emulsion	
Water glycol	
Phosphate ester	
MATERIAL	
Cooler core	Aluminum
Fan blades/Housing	Glass fiber reinforced polypropylene/ Aluminum
Fan housing	Steel
Fan guard	Steel
Other parts	Steel
Surface treatment	Electrostatically powder-coated
COOLER CORE	000
Maximum static operating pre	•
Dynamic operating pressure Heat transfer tolerance	200 psi* ± 6 %
Maximum oil inlet temperatur	
* Tested in accordance with ISO/DIS	200 .
issisu ili assolianise wilii 180/D18-1	0771-1
COOLING CAPACITY CURVES	
	n this catalog are being created
using oil type ISO VG 46 at 14	0 0
<u> </u>	
CONTACT PARKER FOR ADVICE	ON
Oil temperatures > 250 °F	
Oil viscosity $> 100 \text{ cSt} / 500 \text{ St}$	SSU
Aggressive environments	
Environments with heavy airb	orne particulates
High-altitude locations	
tau A	

OAW Water Oil Cooler

For mobile and industrial use

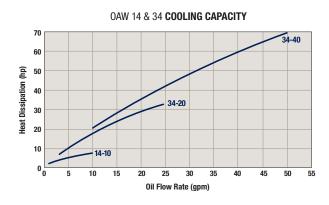
The OAW oil cooler is optimized for use in mobile and industrial sectors. Together with a wide range of accessories, the OAW cooler is suitable for installation in most applications and environments.

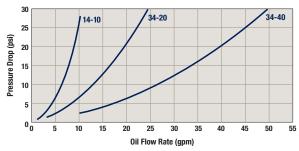

- Optimized design and the right choice of materials and components ensure reliable and long-lasting cooling with low service and maintenance costs.
- Compact design for easy installation.

- Turbulent water flow prevents clogging and reduces maintenance.
- Low water consumption for economical operation.
- SAE O-ring connections for ease of assembly and leak-proof operation.
- Maximum material efficiency with no "Dead Zone."

General

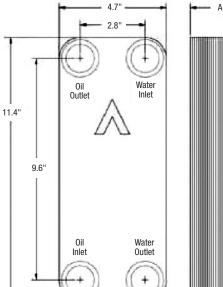
Our OAW coolers are designed for a maximum working pressure of 450 psi. The most standard application for the OAW cooler involves a cold water circuit and a hot oil circuit. Fluids are not limited to oil and water however; see the Fluid Compatibility section in the OAW product literature for more information. Inlets and outlets are clearly identified by the Accumulator and Cooler Division sticker affixed to the front of the unit. When in doubt, pour a liquid in one of the connections and note which connection it comes out of. This will be the inlet and outlet for one circuit (either oil or water). The other inlet should be located on the diagonal from the first inlet. Maximum cooling efficiency is achieved by cross flowing through the plates, the oil inlet and water inlet being located on a diagonal.

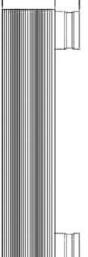

OAW to the max.


OAW 14 & OAW 34

MODEL	Cooling Capacity (*hp)	Connection	A (inches)	Weight (lbs.)	Volume (in ³)
0AW 14-10-SG	2-7	5/8" SAE 0-ring	1.4	1.4	15
0AW 34-20	6-33	1" SAE 0-ring	2.3	9	74
0AW 34-40	20-69	1" SAE 0-ring	4.1	15	149

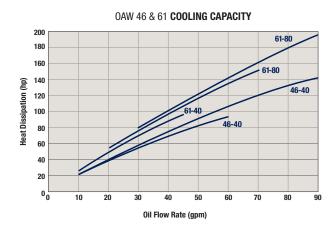
*Cooling capacity is calculated with the following conditions. For other flow conditions, type of fluids or temperatures, please see page 35 or consult Accumulator and Cooler Division. Oil type – ISO VG 32 – Oil/water flow ratio – 2:1 – Oil inlet temperature – 140°F – Water inlet temperature – 80°F



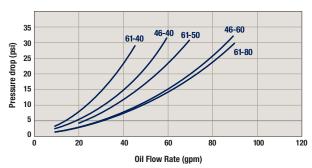

OAW 14 & 34 PRESSURE DROP

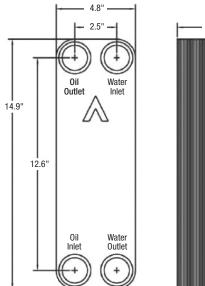
7.4"

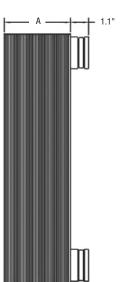
- 1.1"

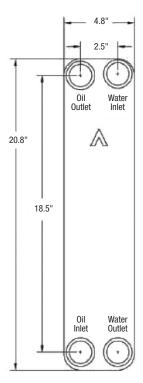


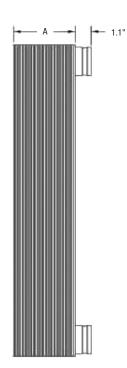
31

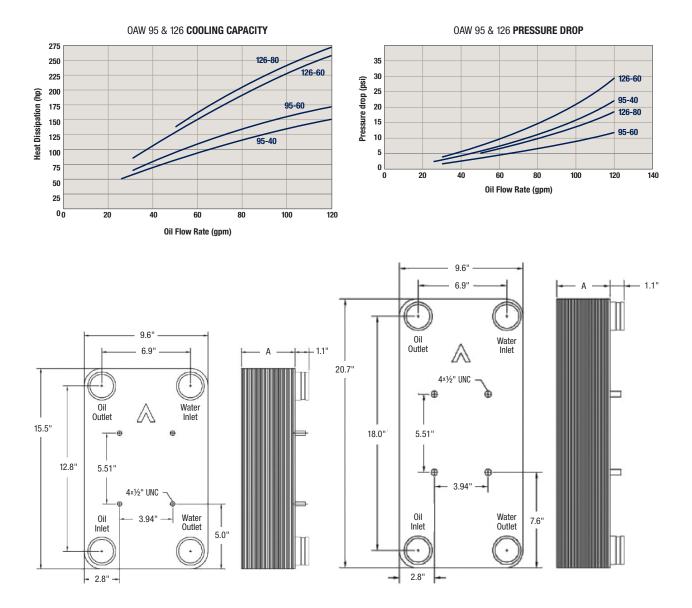

OAW 46 & OAW 61


MODEL	Cooling Capacity (*hp)	Connection	A (inches)	Weight (lbs.)	Volume (in ³)
0AW 46-40	21-94	1¼" SAE 0-ring	3.9	13	200
0AW 46-60	23-142	1¼" SAE 0-ring	5.7	18	300
0AW 61-40	27-98	1¼" SAE 0-ring	3.9	19	271
0AW 61-60	53-152	1¼" SAE 0-ring	5.7	27	406
OAW 61-80	79-198	1¼" SAE 0-ring	7.4	34	542


*Cooling capacity is calculated with the following conditions. For other flow conditions, type of fluids or temperatures, please see page 35 or consult Accumulator and Cooler Division. Oil type – ISO VG 32 – Oil/water flow ratio – 2:1 – Oil inlet temperature – 140°F – Water inlet temperature – 80°F



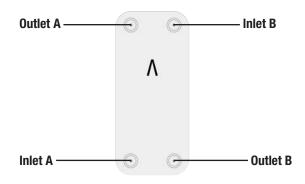

0AW 46 & 61 PRESSURE DROP



OAW 95 & OAW 126

MODEL	Cooling Capacity (*hp)	Connection	A (inches)	Weight (lbs.)	Volume (in ³)
0AW 95-40	50-150	11/2" SAE O-ring	4.1	44	427
0AW 95-60	63-171	1 ¹ / ₂ " SAE 0-ring	6.0	59	641
0AW 126-60	84-259	1 ¹ /2" SAE 0-ring	6.1	79	856
0AW 126-80	138-274	11/2" SAE O-ring	7.9	97	1142

*Cooling capacity is calculated with the following conditions. For other flow conditions, type of fluids or temperatures, please see page 35 or consult Accumulator and Cooler Division. Oil type – ISO VG 32 – Oil/water flow ratio – 2:1 – Oil inlet temperature – 140°F – Water inlet temperature – 80°F



Installation

Installation Instructions for OAW Coolers

The OAW coolers are designed for a maximum working pressure of 450 psi. The most standard application for the OAW cooler involves a cold water circuit and a hot oil circuit. Fluids are not limited to oil and water however; for other types of fluid, please contact the factory.

Inlets and outlets are clearly identified by the Accumulator and Cooler Division sticker affixed to the front of the unit. When in doubt, pour a liquid in one of the connections and note which connection it comes out of. This will be the inlet and outlet for one circuit (either oil or water). The other inlet should be located on the diagonal from the first inlet.

Maximum cooling efficiency is achieved by cross flowing through the plates, the oil inlet and water inlet being located on a diagonal. Failure to have the cooler attached in this manner will lead to a decrease in efficiency.

The cooler may be mounted in any position. However, requirements for draining the circuits should be taken into consideration.

The OAW coolers must not be installed into a rigid frame. Use the Accumulator and Cooler Division purpose-made brackets (or "Armaflex" equivalent) to provide a "soft, elastic installation." The OAW 95 and 126 series coolers come equipped with stud bolts to assist in mounting. However, these bolts alone should not be used to suspend the cooler. All tubing should be done in such a way as to minimize vibrations to the cooler. When installed on a return line, the cooler should be connected using flexible hoses.

When to Clean

Fouling occurs mainly on the water side of the cooler. Fouling can be detected by monitoring the inlet and outlet temperatures and/or the pressure drop across the cooler. Fouling will result in decreased heat transfer, producing temperature differences lower than specified.

Fouling also restricts the passages and thus causes an increase in velocity. This will produce an increase in the pressure drop across the cooler. When either the temperature difference or the pressure drop is significantly different from specified values, cleaning should be performed.

Methods of Cleaning

If cleaning the cooler is required, backflushing with water will remove most of the soft deposits. If fouling appears in the form of hard deposits, circulate a weak acid through the cooler in reverse direction to normal water flow. Use 5% phosphoric acid for infrequent cleanings. For more frequent cleaning, use 5% oxalic acid or similar weak organic acid. Afterwards flush with a large quantity of water to remove all acid from the cooler before starting up the system again. Never wait until the cooler is completely clogged before cleaning!

Filters or Strainers

When there are particles in the fluid that could clog the cooler, filters or strainers should be used. Particles up to 1mm diameter will not cause any problems.

Fluid Compatibility

On the oil side, most synthetic and petroleum based fluids may be used. For aggressive oils, please contact Accumulator and Cooler Division for compatibility. On the water side, de-mineralized and untreated water may be used without concern. When water is chemically treated please contact Accumulator and Cooler Division for suitability. Sea water cannot be used in OAW coolers. For sea water applications, please contact Accumulator and Cooler Division on information on titanium coolers. Do not use ammonia in the OAW coolers.

Correction Factors for Other Oil Types, Temperatures and Flow Rates

All of the cooling curves are based on very specific conditions. These include using an ISO VG 32 oil, having an oil/water ratio of 2:1, and having an oil/ water inlet difference of 60 °F. For other conditions, the following correction factors should be used.

Correction Factors for Other Oil Types

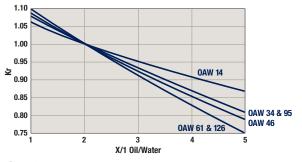
Cooling Capacity: Multiply the requested cooling capacity with the correction factor Kv.

Oil Pressure Drop: Multiply the pressure drop with the correction factor Kp.

Viscocity Class	Cooling Capacity Factor, Kv	Pressure Drop Factor, Kp
ISO VG 22	0.95	0.9
ISO VG 32	1.0	1.0
ISO VG 46	1.05	1.3
ISO VG 68	1.2	1.7
ISO VG 100	1.35	2.2
ISO VG 150	1.6	3.0
ISO VG 220	1.9	4.3

Table 1

Correction Factors for Other Inlet Temperature Differences


Cooling Capacity: For inlet temperature differences other than 60 °F, multiply the requested cooling capacity by the correction factor Kt.

ETD	30	40	50	60	70
Kt	1.87	1.43	1.17	1.0	0.88

Table 2

Correction Curves for Other Oil/Water Flow Ratios

Cooling Capacity: For all other oil/water flow ratios other than 2:1, divide the requested cooling capacity by the factor Kr obtained from the curves in Graph 3.

Graph 3

Sizing Example

Conditions:		
Oil type:		ISO VG 68
Oil Flow:		40 gpm
Desired cooling capacity	Qr	40 hp
Oil temperature in	То	140 °F
Water temperature in	Tw	100 °F
Available water flow		10 gpm
Maximum Pressure Drop		30 psi

$ETD = To - Tw = 140^{\circ}F - 100^{\circ}F = 40^{\circ}F$

The design cooling capacity (Qd) is the cooling capacity used when selecting a suitable cooler. Qd is calculated by multiplying Qr by the factors Kv and Kt (found in Tables 1 and 2 respectively) and then dividing by the Kr factor found from Graph 3.

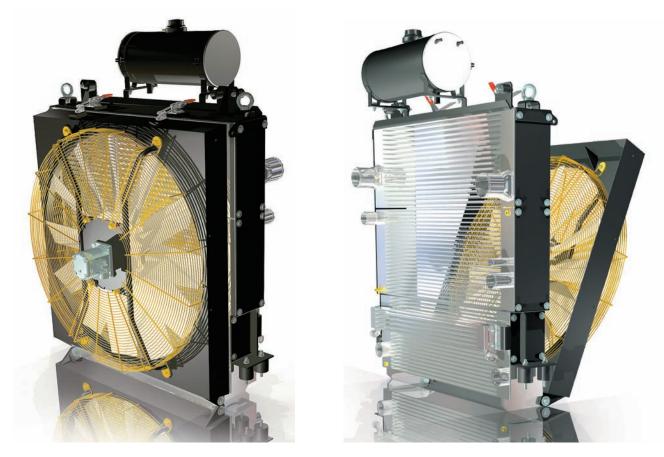
Qd = Qr x Kv x Kt = 40 hp x 1.2 x 1.43 = 83 hp Kr 0.82

According to the cooling capacity curves on page 32, the minimum size cooler for these conditions is an OAW 61-40.

The oil pressure drop can be found from the pressure drop curve. It should be multiplied by the Pressure Drop Factor, Kp from Table 1.

DPoil = $p \times Kp = 23 psi \times 1.7 = 39.1 psi.$

In this case the pressure drop exceeds the maximum allowable. The next size cooler would be an: OAW 61-60


The pressure drop for this cooler would be:

$DPoil = p \times Kp = 12 psi \times 1.7 = 20.4 psi.$

Therefore the correct size cooler would be the OAW 61-60.

For assistance with calculations, please contact Accumulator and Cooler Division.

Catalog HY10-1700/Americas

Professional competence, as well as advanced technology and extensive knowledge from the industry, allow us to provide many cooler combinations, which meet your unique needs.

Cooling Modules/ Combination Cooler

Providing optimal solutions

A close collaboration between our application engineers, designers and you as the customer during the whole project will result in a high-quality product. The final product will be a tailor-made cooler, which always meets your unique needs.

Extensive choices

Long-term experience from the mobile field has provided us with a unique ability to deliver the ideal combination cooler solution. Depending on the conditions, the cooler fan can be operated by the diesel engine on the machine or by a hydraulic motor or a DC motor. We can also supply many different cooler combination options. A frequent combination is the "side-by-side"-cooler, where the coolers are placed side-byside, no matter the media, such as a water cooler, an oil cooler and an intercooler. Another solution is the "sandwich"-cooler, where the coolers are placed in front of each other. The solution could also be a combination of these two. No matter which combination will be used, the pressure drop and the heat dissipation across the core will always be optimal.